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Abstract. Various experiments show that the arrival directions of multi-TeV cosmic rays show significant

anisotropies at small angular scales. It was recently argued that this small scale structure may arise naturally

by cosmic ray diffusion in a large-scale cosmic ray gradient in combination with deflections in local turbulent

magnetic fields. We show via analytical and numerical methods that the non-trivial power spectrum in this setup

is a direct consequence of Liouville’s theorem and can be related to properties of relative diffusion.

1 Introduction

Various CR observatories have revealed anisotropies in the

arrival directions of TeV-PeV Galactic CRs on large and

small angular scales (Amenomori et al., 2005; Amenomori,

2006; Guillian et al., 2007; Abdo et al., 2008, 2009; Bartoli

et al., 2013; Aglietta et al., 2009; Abbasi et al., 2011; Aartsen

et al., 2013; Abeysekara et al., 2014). The explanation of the

strength and phase of the observed dipole anisotropy is chal-

lenging, but is qualitatively consistent with the diffusive pre-

diction (Blasi and Amato, 2012; Mertsch and Funk, 2015).

Medium and small scale anisotropies could be a combined

effect of nearby CR sources (Salvati and Sacco, 2008; Bier-

mann et al., 2013) and the local interstellar magnetic field

structure introducing an energy-dependent magnetic mirror

leakage (Drury and Aharonian, 2008), preferred CR trans-

port directions (Malkov et al., 2010) or magnetic lenses (Bat-

taner et al., 2011, 2015). The possible influence of the he-

liosphere via magnetic reconnection in the heliotail (Lazar-

ian and Desiati, 2010), non-isotropic particle transport in the

heliosheath (Desiati and Lazarian, 2013) or the heliospheric

electric field structure (Drury, 2013) have also been consid-

ered. More exotic models invoke strangelet production in

molecular clouds (Kotera et al., 2013) or in neutron stars

(Perez-Garcia et al., 2014).

We will focus in this paper on the power spectrum of

small-scale anisotropies in the arrival directions of CRs. This

has been studied by IceCube (Aartsen et al., 2013) with about

1.5× 1011 collected CR events at median energy of 20 TeV

and more recently with HAWC (Abeysekara et al., 2014) in-

cluding 4.6× 1010 events at a median energy of 2 TeV. The

results are usually expressed in terms of the relative intensity

map δI defined by the local phase space distribution (PSD)

f as δI ≡ (4πf −n)/n, where n is the angular averaged CR

density. The data points shown in Fig. 1 correspond to the

multipole power spectra defined as

C` =
1

4π

∫
dp̂1

∫
dp̂2P`

(
p̂1p̂2

)
δI
(
p̂1

)
δI
(
p̂2

)
. (1)

An average, both power spectra show a strong contribu-

tion of low-` multipoles and a subsequent fall-off of high-`

multipole power. Note that the analysis of the power spectra

in both experiments are affected by the limited field of view

(FoV) and the finite size of the event samples. The limited

FoV introduces cross-talk between the power of neighboring

multipoles and introduces large uncertainties in the recon-

struction of the low-`multipole moments. On the other hand,

the finite size of the event sample introduces noise at the

level of N ' fsky4π/NCR, where fsky is the effective frac-

tion of the sky that contains NCR collected events. For Ice-

Cube we can estimate fsky ' 0.3 andNIC ' 2.5×10−11 and

for HAWC with fsky ' 0.7 we have NHAWC ' 1.8× 10−10.

These different noise levels are indicated as horizontal dotted

lines in Fig. 1.

It has been argued by Giacinti and Sigl (2012) that the ap-

pearance of small-scale anisotropies is a natural consequence

of CR propagation in the local turbulent magnetic field with a

global dipole anisotropy set by diffusion. It was subsequently

shown that the behavior of the power spectra inferred from

experimental data can be explained by a hierarchical transi-

tion between multipole moments in local turbulence (Ahlers,
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Figure 1. Observed power spectra from IceCube (Aartsen et al.,

2013) and HAWC (Abeysekara et al., 2014) (from Ahlers and

Mertsch, 2015). The horizontal dotted lines indicate the experimen-

tal resolution (shot noise). The dashed line indicates the asymptotic

solution discussed in Ahlers (2014).

2014). The result of this analytical model is also shown as

a dashed line in Fig. 1. In this paper we will summarize the

results of Ahlers (2014) and the recent update of Ahlers and

Mertsch (2015).

2 Gedankenexperiment

We first consider a case of a idealized situation where the

initial PSD f̃ is homogeneous but non-isotropic (Ahlers,

2014). Using Liouville’s theorem, we can simply relate the

PSD at a later time to the initial homogenous configuration

as f (T ,r,p)= f (0,r(−T ),p(−T ))= f̃ (p(−T )). Numeri-

cally, this corresponds to the backtracking of CRs with ar-

rival orientation p̂ along their trajectory to the initial homo-

geneous configuration at time −T . The multipole spectrum

of the PSD f (T ) can then be simply related to the initial

configuration f̃ via the identity

1

4π

∑
`≥0

(2`+ 1)C`(T )=
1

4π

∫
dp̂1

[
f̃
(
p1(−T )

)]2
. (2)

This expression is for a particular magnetic field ensemble.

However, for the ensemble-average we can make use of the

fact that the combination of a regular and average random

rotation of an isotropic distribution is eventually isotropic.

More precisely, in the case of pure turbulence the average

distribution is isotropic at all times, whereas for the combi-

nation of turbulent and regular magnetic fields the average

distribution at intermediate times can in principle be non-

isotropic but is expected to reach an isotropic state eventu-

ally. Therefore, we can relate the power spectra at different

times as

1

4π

∑
`≥0

(2`+ 1) 〈C`〉 (T )=
1

4π

∑
`≥0

(2`+ 1)C̃` . (3)

Some additional assumptions have to be made to infer the

power of individual multipoles. Ahlers (2014) argued that

individual multipole powers decay with a rate proportional

to `(`+ 1). However, from the expression (3) we know that

this process also redistributes power between multipole mo-

ments. If one makes the assumption that the transition be-

tween powers is hierarchical and the decay of C` generates

only power in C`+1 one can derive an asymptotic form of the

relative power given by the simple expression

limT→∞

〈C`〉(T )

〈C1〉(T )
'

18

(2`+ 1)(`+ 2)(`+ 1)
. (4)

The same relative power spectrum should also be followed

by the relative intensity map δI . We show the ratio (4) in

Fig. (1) in comparison with the power spectrum observed

with IceCube and HAWC. The scaling of ` > 5 multipoles

is well described by the asymptotic form (Eq. 4).

Note, however, that the individual ensemble-averaged con-

tributions 〈C〉(T ) of the model of Ahlers (2014) all decay ex-

ponentially in time. For the discussion of the expected small-

scale anisotropies of a quasi-stationary diffusion state it is

necessary to introduce an effective source term in form of

the large-scale CR gradient. This was recently discussed by

Ahlers and Mertsch (2015) and we summarize this approach

in the next sections.

3 Relative diffusion

The previous thought experiment was designed to extract

the influence of the local turbulence on the redistribution of

multipole power. In order to apply these results to the re-

alistic case of cosmic ray diffusion we have to account for

source terms of the initial dipole anisotropy in the form of

a cosmic ray gradient ∇n. Instead of a homogeneous ini-

tial condition we can approximate this situation by assuming

a quasi-stationary solution as a result of Fick’s law (Jones,

1990),

4π〈f 〉 ' n+
(
r − 3p̂K

)
∇n, (5)

where K is the diffusion tensor and n the local (r = 0) CR

density. The standard dipole prediction of the relative inten-

sity is in this case

1

4π
C1 =

∣∣∣∣K∇nn
∣∣∣∣ . (6)

We can now use again Liouville’s theorem to evaluate the

sum over multipoles. For large look-back times T the spatial

term in the ansatz (5) dominates over the anisotropy induced
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by Fick’s law. The ensemble-averaged power spectrum of the

relative intensity δI can then be evaluated as

1

4π
〈C`〉 '

∫
dp̂1

4π

∫
dp̂2

4π
P`
(
p̂1p̂2

)
× limT→∞〈r1i(−T )r2j (−T )〉

∂in∂jn

n2
. (7)

The sum over dipoles as in Eq. (3) is not constant in this

case, but increases linearly for large backtracking times T .

More precisely, the sum over `≥ 1 multipoles approaches

asymptotically1

1

4π

∑
`≥1

(2`+ 1)〈C`〉(T )' 2T K̃s
ij

∂in∂jn

n2
, (8)

where the symmetric part of the relative diffusion tensor is

defined as

K̃s
ij =

∫
dp̂1

4π

∫
dp̂2

4π
limT→∞

1

4T

〈
1r12i(−T )1r12j (−T )

〉
, (9)

with 1r12 = r1− r2. This shows that the effect of the gen-

eration of small-scale anisotropies from local turbulence is

connected to relative diffusion. Note that the multipoles

in Eq. (7) are expected to be finite in the limit of large

backtracking times since particle trajectories with arbitrarily

small opening angles will eventually become uncorrelated,

〈r1i(−T )r2j (−T )〉 → 0. In the next section we will describe

simulations of this process that show this asymptotic behav-

ior of the power spectrum numerically.

4 Simulation

We follow the approach of Giacalone and Jokipii (1999) and

define a turbulent magnetic field as

δB(r)=

N∑
n=1

A(kn) (an cosαn+ bn sinαn)cos(knr +βn) , (10)

where the N wave vectors kn have random orientations in

three dimensions and fixed amplitudes kn = kmine
(n−1)1lnk

with 1lnk = ln(kmax/kmin)/N , i.e. equal logarithmic spac-

ing. The parameters αn and βn are random phases in [0,2π )

and the vectors an and bn are defined as unit vectors in the

direction kn× ez and kn× an, respectively. In this way the

field obeys ∇B= 0. The amplitudes A(kn) are defined as

A2(kn)= 2σ 2B2
0G(kn)/

∑N
n=1G(kn) with

G(kn)= 4πk2
n

kn1lnk

1+ (knλc)γ
. (11)

We assume that for kn� 1/λc the turbulence follows a

Kolmogorov-type turbulence with γ = 11/3. The scaling

factor σ 2 is normalized such that σ 2
= UδB/UB0

and λc is

a wave vector corresponding to the coherence scale of the

turbulent magnetic field.

1We use the identity δ(x− y)=
∑
`

2`+1
2
P`(x)P`(y) and

P`(1)= 1.
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Figure 2. The evolution of the ensemble-averaged power spec-

trum (Eq. 7) in units of �= eB0/p0 for a CR gradient parallel

(solid lines) and perpendicular (dotted lines) to the regular mag-

netic field and the 3-D turbulence model discussed in the main text

(see also Ahlers and Mertsch, 2015). We show results in terms

of the dipole 〈C1〉 (black), monopole 〈C0〉 (blue) and medium-

` multipoles (green). We also show the asymptotic noise level

(Eq. 12) (red) and the dipole prediction (Eq. 6) of standard diffu-

sion (magenta) evaluated by the replacement 〈r1ir2j 〉 → 〈r1i〉〈r2j 〉

in Eq. (7).

In our simulation we assume σ 2
= 1 and choose λmin =

0.01λc and λmax = 100λc with k = 2π/λ. We fix the rigid-

ity of the CRs to rL = 0.1λC. We sample over NB = 10

different turbulent magnetic field configurations. For each

field configuration we uniformly sample Npix = 12 288 CR

orientation p̂i(0) following the HEALPix parametrization

(nside = 32) (Gorski et al., 2005), that we track back through

the static magnetic field B(r)= B0êz+ δB(r) to find the

initial orientation p̂i(−T ) and position ri(−T ). Figure 2

shows the power spectrum at different times determined via

a multipole expansion of the maps using the HEALPix utili-

ties.

At large times the high-` components in the multipole ex-

pansion are dominated by shot noise, due to the finite sample

size and the uncorrelated random walk at large back-tracking
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times. This noise level can be estimated as

N '
4π

Npix

2TKij
∂in∂jn

n2
. (12)

Therefore, for large backtracking times T the map is even-

tually dominated by noise. However, for sufficiently low

multipole moments and large sample size Npix the stable

asymptotic behavior of low-` multipoles can be recovered.

5 Conclusions

We have discussed in this paper the generation of small-scale

anisotropy from CR propagation in local magnetic turbu-

lence. We have shown that with minimal assumptions about

the decay of and transition between multipole powers one can

derive an asymptotic solution that is consistent with observa-

tions of IceCube and HAWC. We have discussed our recent

approach to bring these results into a more realistic setup of

CR diffusion with a large-scale CR gradient. One can show

analytically that the generation of multipole power is related

to properties of relative CR diffusion. This was supported by

numerical simulations.
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